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The feeding behaviour of many small, free-swimming organisms involves the creation 
of a scanning current by the coordinated movement of a group of appendages. In  
this paper, we study the generation of scanning currents in Stokes flow in a number 
of simple models, utilizing the movement of Stokeslets, spheres, or stalks to set up 
an average scanning drift in a suitable far-field formulation. Various mechanisms 
may then be classified by the rate of decay at infinity of the mean scanning current. 
In addition, optimal scanning can be investigated by minimizing the mean power 
required to create a current of prescribed amplitude. The simple mechanisms for 
scanning described here provide a framework within which the appendage movements 
of small aquatic organisms can be analysed and the relative merits of scanning and 
swimming strategies can be investigated. 

1. Introduction 
Many small, free-swimming organisms feed on particles of algae or detritus 

suspended in the water about them. These suspension feeders, which include 
protozoans, diverse invertebrate larvae, and planktonic crustaceans, encounter food 
particles by using movable appendages to locomote through the water or else to create 
local feeding currents allowing nearby water to be scanned. The appendages often 
operate at low Reynolds numbers (see e.g. Lochead 1977; Zaret 1980; Chia, 
Buckland-Nicks & Young 1981 ; Fenchel 1986), and it is therefore possible to use 
Stokesian hydrodynamics to estimate the power requirement for the feeding be- 
haviour. If the feeding energy budget has been a factor in the evolution of these 
behaviours in various zooplankters, we might then expect the motions to be in some 
sense hydrodynamically efficient. This paper is concerned with several simple 
fluid-dynamical models of feeding with particular emphasis on behaviours that 
satisfy some criterion of optimality. 

The principal focus of this paper is on the process of generating a ‘scanning 
current ’. We shall not address here the process of removing food particles that have 
come within the capture range of the organism (although at  low Reynolds number 
this is also a problem of interest). In general terms, the problem we wish to consider 
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is the following : how should a small, free-swimming creature, endowed with a set of 
movable appendages, wave these about so as to ‘scan’ (i.e. cause to  move past the 
organism or through some capture zone), with minimal expenditure of energy, a fixed 
volume of water per unit time ‘2 To study this question we shall explore a number of 
highly simplified models of appendage motion, in which this general question can 
be precisely formulated and, to  some degree, answered. 

Although all of our models are over-simplified when compared to the actual 
geometry of small organisms engaged in feeding behaviours, we suggest that a basic 
study of available Stokesian strategies is a necessary first step for understanding the 
variety of biological examples. The patterns of movement of feeding appendages can 
vary between species and between the life stages of one species. Moreover, various 
appendages on the body of a single organism can move in different ways, and one 
appendage can show several patterns of movement (e.g. Koehl 1984). It could well 
be that a hydrodynamically inefficient behaviour carries little penalty, but that 
premise can also be tested within the same class of models. Furthermore, i t  is 
important to  remember that, for many small organisms, swimming is also a feeding 
behaviour, and i t  is of interest to understand when it  might be preferred to  move 
the body through the water, instead of the water past the body. For example, a clear 
case of scanning with no swimming occurs during hovering by an organism that would 
otherwise sink under gravity. (For neutrally buoyant bodies, we give an example in 
$6.) Indeed the class of problems that arise in the study of scanning are related to, 
but quite distinct from, certain questions of optimality arising in the theory of 
locomotion at low Reynolds number, and are perhaps closest to models of fluid 
transport by ciliated surfaces (Lighthill 1975). They are also closely related to studies 
of feeding by sessile, flagellated organisms (Higdon 1979 13). 

In $ 9 we consider some biological consequences of the physical scanning systems 
of small organisms predicted by our models. Our results can be used to investigate 
the relative merits of feeding strategies according to  their hydrodynamic efficiencies. 

2. Motion of a sphere in an infinite fluid 
As noted in 0 1, scanning currents are frequently generated by periodic, almost 

clocklike motion of a group of feeding appendages. Possibly the simplest problem 
illustrative of the process replaces the appendage by a single sphere moving about 
in an infinite expanse of fluid. We assume that the time-independent Stokes equations 
govern the resulting motion of the fluid. Let the sphere have radius a. I n  order to 
realize a body of variable viscous resistance we allow a to depend upon time. While 
this will also introduce a volume change of little biological relevance, the model is 
representative of a large class of time-dependent Stokes flows in an exterior domain. 

We suppose that the position vector of the centre of the sphere is < ( t ) .  Then the 
velocity u ( x ,  t )  of the fluid at any point x exterior to the sphere is given by 

u, (x , t )  = s , j ( x - r ) ~ j ( t ) + r i ~ ( x - s )  

= C,(x-<(t), t ) ,  (1) 

where, by the classical solution of Stokes (Batchelor 1967 p. 230) 
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The first term on the right-hand side of (2a), involving two contributions which decay 
like IxI-l, comprise a Stokeslet effect of a concentrated force on the surrounding fluid, 
and is one of the infinite set of singular solution of Stokes equations derivable from 
symmetric and skew-symmetric fundamental solution tensors. For discussion of this 
general approach to exterior problems see Batchelor (1967, chapter 4), Blake (1971), 
Lighthill (1975, chapter 3), and Chwang & Wu (1975). 

We now suppose that the sphere moves on a fixed closed orbit with fixed period 
T. (We must fix the period since it will turn out that a fixed scanning amplitude can 
be maintained at arbitrarily low power by sufficiently slow movement, this being a 
consequence of viscous dissipation being quadratic in the velocity, see below.) Since 
the force on the sphere is F(t) = 6np4 while the radial viscous stress on the sphere, 
associated with the change of radius, is -2pa-la, the work done over one orbit is 

W = 2np s.‘ (3aP + 4 ~ 2 )  dt, (3) 

where p is the viscosity of the fluid. Our object is to minimize W over all closed orbits 
executed in period T, given that a certain measure of scanning amplitude is fixed. 

According to ( I ) ,  u(x, t) has a complicated functional dependence upon C ( t )  and to 
simplify this as much as possible we consider the fluid in a neighbourhood of infinity, 
confining attention to a ‘far field’ where Ix-61 9 L, L being a length which 
characterizes the size of the orbit. To fix ideas and simplify the analysis we shall 
assume that < is periodic of period T and with zero mean, and that the orbit size is 
much larger than the size of the body being waved. That is, we let 

j r ( ( t )dt  = 0, L = max I<(t)l % max a. 
Odt<T O d t t T  

Expanding C, in a Taylor’s series we have 

ai, i mit 
U i ( X ,  t)  = C&x) -- (x) 5 +- ~ ( X ) E k E I +  ... , 

ax, 2i3xkaxt 

(4) 

The first term on the right-hand side of (5 )  contains the dominant fluid-dynamical 
effect of a moving sphere, given by the terms homogeneous of degree - 1 in (2). This 
is again the Stokeslet term of (2). But it is evident that this term will average to zero 
over one period if a is constant. This simply says that motion of a rigid sphere on 
a closed orbit can produce no mean force on the fluid. By the same token, if a(t)  is 
allowed to vary, a net Stokeslet strength can arise over one period and the far field 
is dominated by this effective Stokeslet. This suggests that scanning behaviours can 
be characterized by the order of decay at infinity of velocity when averaged over an 
orbit. The dominant scanning current just described, involving a decay like Ix1-l will 
be called Jirst-order scanning. One important example of first-order scanning is the 
flow field generated by a relatively heavy organism m it hovers in the fluid, since 
in this case the organism applies a force to the fluid equal to its weight. An example 
of second-order scanning, involving decay in the far field like is a free, neutrally 
buoyant organism. In  that case the instantaneous force applied to the fluid is always 
zero, and sufficiently complicated movements can lead to non-zero terms which decay 
with the above estimate. 

A formal definition of the order of a scanning behaviour should, however, take into 
consideration the fact that it is possible for the average particle drift in the far field 
to have no radial component. In  such a case the particle will not move closer to the 
organism. We define the scanningfield U(x)  to be the average over a period of u(x, t ) .  
Since this average is for fixed x, Eulerian variables have been retained. Not only is 
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the Eulerian average the simplest to  invoke here, it is also appropriate to the 
biological problem of feeding in a uniform suspension of food particles (or in a random 
environment with a uniform distribution of food particles). If a feeding strategy 
targeted a specific Lagrangian point representing an inertialess particle of food, then 
a Lagrangian average would be relevant and this would in general be distinct from 
the Eulerian one. Nevertheless, for the present model with assumption (4), the small 
amplitude of the Stokeslet velocity in the far field ensures that the Eulerian and 
Lagrangian averages agree to high order. We give details concerning this point in 
Appendix A. 

The scanning field U is thus an auxiliary solenoidal flow field defined kinematically 
in the far field. In  terms of U, we now define nth-order scanning by the condition 
that x* U be O ( l ~ l l - ~ )  as 1x1 + 00. The fact that  only the radial component enters into 
this definition makes the scanning order different from the simple order of decay of 
the amplitude of the scanning field, a distinction which can be important in some 
circumstances (see $9). 

The remainder of this section is devoted to an introductory example of third-order 
scanning, which results when a is constant, so the problem is one of moving a single 
rigid sphere on a closed orbit. Computing the derivatives in ( 5 )  using (2), and then 
averaging over one period, a mean Eulerian velocity field is obtained in the form 

Since a is now constant the first term on the right-hand side of (6) contributes nothing, 
while the second and third terms yield terms of order I x ( - ~  and lxl-3 respectively. The 
second term, however, is seen to contribute no radial component to U. We are thus 
left with 

xt Ut(x )  = - @ I X [ - ~ -  T rl i . ~ E ~ d t + 0 ( a L ~ T - ~   XI-^). (7) 

This scanning mechanism is therefore third-order according to the above definition. 
Consequently a moving sphere has a weak effect in the far field. To introduce a 
measure of the amplitude of the scanning field, imagine a large spherical ‘target zone ’ 
of radius R 9 L, within which particles are trapped and consumed. (We formally take 
R to  be O(lxl), but regard it as actually a rather small zone in the far-field domain.) 
This would correspond, for example, to the zone around the body of a calanoid 
copepod within which i t  perceives a food particle and responds with a capture motion 
(Koehl 1984). The trapping rate is then proportional to the flux of food particles, as 
determined by the volume flux of the scanning field of fluid, say, into the target 
zone. From (7) this flux crossing into the target sphere may be evaluated by 
integrating the radial component of the scanning field over that  portion of the target 
sphere where i t  is negative, and we obtain (3an/4RT) IMI, where 

is a vector amplitude with dimensions L3. The vector M is determined by the 
orientation of the movement of the body and, by (7),  its orientation determines a 
hemisphere across which food particles will enter and may be trapped. 
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2.1. Optimal motion in a plane 
From (8) it suffices to consider only those orbits which establish a vector scanning 
amplitude in a particular direction. Taking this direction to be parallel to the y-axis, 
we have M = (0, M, 0) as another constraint on the problem, in addition to the fixing 
of the period T. We therefore consider only orbits lying in the plane 
z = 0,r = (El, g2, 0). To minimize W for fixed scanning amplitude, we seek extremals 
of W -  (67cqA)  M = 9 where A is a multiplier. Since now 

the Euler equations are 
&+AE,& = 0, t 2 4 E l d l  = 0. 

The solution of (10) in terms of elliptic functions is elementary, but since this problem 
is something of a prototype of our subject we give some details. Multiplying (1Oa) 
and (lob) by dl and t2 respectively and adding we obtain 

. .  Et+Eg = q2 = constant. 

d2 -+AEJ = - c = constant. 

(1la) 

( l i b )  

A second integral follows from (10 b) : 

Combining equations (11) and integrating to obtain t(&), there results 

in terms of the elliptic function cn (u, k). 

periodicity implies, from (11 b), that 
To investigate how parameters are determined by T and M we first note that 

(13) 
2CT 

Etdt = - 
A .  

Thus the conditions that the period be T, and that (13) hold, yield two relations 
between the parameters. Since C = (2k2- I)  q, these take the form 

T = (4/(Aq)f) K(k), (14a) 

(14b) T = (8/(Aq)f) (2k2 - 1)-l [E(k) - (1 - k2) K(k)], 

in terms of the complete elliptic integrals E and K. From these two expresions we 
obtain a transcendental equation for k. From the tabulated values of the complete 
elliptic integrals we find that k2 = 0.83 and K(k) = 2.32 approximately. 

There remains the constraint imposed by fixing M. We have from (9) and (1 1 b) 
that 

PT rT 
M = + A  J tfdt-C J [tdt. 

0 0 

The second term on the right-hand side of (15) can be evaluated using (13). For the 
first term, we use (10a) and (11) as follows: 

ST &dt = jT A[:g2dt = [q2-(+Att-C)2]dt = A t?(+A[t-C)dt, (16) 

FLX 177 

s: T 

0 0 

14 
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Circular trial orbit 
/ 

FIMJRE 1.  One-fourth of the optimal figure-of-eight motion of a sphere in a plane, compared with 
a figure-of-eight consisting of two circles. The latter is 12% less efficient than the optimal one 
according to the criterion (25), and 18 % less efficient according to (35). 

4C2T T 
from which we obtain 

[:dt = 7 + j p e F .  I.' 
Thus (15) implies 

and we may use (14a) to express q in terms of M and T, giving 

4t (&y[, = k cn (u, k), u = - TK . 

It can also be shown (see e.g. Jahnke & Emde 1945, chapters 5 and 6) that 

(&)'5p = E(am(u), k)-$ 

These two expressions determine a figure-of-eight orbit shown in figure 1. 

local minimum of 9. The second variation is, with (if[,, if[& = (u, v ) ,  
Let us now verify that the extremal defined by (19), (20) is indeed obtained at  a 

T 
ifzS = I [zi2 + (3  - A t ,  u ) ~  -:Az[: u2 + ACu2] dt. 

if29 3 jT G@dt 3 0. 

(21 1 
0 

If we set u = &$(t) with $ periodic of period T, and use 

d ( W t  = i , (AC- :~z t3  (22) 

in (21) we obtain, after integrating by parts, 

(23) 
0 

We are dealing here exclusively with functions of period T. The minimizing functions 
are thus seen to be 

and we see from (23) that if29 = 0. However (24) represents an infinitesimal shift of 
the sphere along its orbit, implying that if29 > 0 for any perturbation that is not 
simply a shift. In this sense a local minimum of 9 has been achieved. 

Let us measure the efficiency of this scanning mechanism as follows : if q(R)  is the 

(u, v )  = (&, d2) x constant, (24) 
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volume flow per unit time into a target sphere of radius R, as discussed above, we 
define the efficiency of scanning to be the dimensionless number 

'I = 4pW-'V(M4). (25) 

For a far-field calculation, this value of 'I is based upon an extrapolation of the 
scanning field back to target zones comparable in size with the orbit. We must note, 
however, that the most reasonable definition of efficiency is not obvious and will 
depend upon the order of the scanning; we discuss this further in $3. In  the present 
case, and with the definition (25), the optimal orbit yields, using (18), 

For comparison consider the figure-of-eight orbit consisting of two touching circles 
of diameter L, the motion being again with constant speed q.  For this orbit we have 

, M = xLg, 2'1 = ( 4 ~ ) - 4  = 0.034. (27) 
2xL T = -  
4 

This is very close to the value for the optimal figure-of-eight. We superimpose this 
orbit on the optimal one in figure 1. We thus see that significant deviations from the 
optimal orbit do not change the efficiency very much. 

We note in passing that (27) shows clearly how increasing the period for fixed 
scanning amplitude (here, fixed L )  can lower the rate of working, the latter being 
proportional to q2L, and thus shows why the period must be fixed to obtain a sensible 
optimization problem. 

2.2. Other results 

If the motion of the sphere is not constrained to lie in a plane, the optimal orbits 
are no longer figure-of-eight motions. Extending the above analysis, one obtains a 
family of spiralling orbits. If M is parallel to the z-axis, the optimal orbits are closed 
spirals < = (p  cos 8, p sin 8, &,) where 

Note that the motion is again at constant speed. The additional integrations constant 
p determines the number of turns of the spiral over one period. These three- 
dimensional orbits are rather special and we shall not consider them further here. 
Nevertheless it is likely that most scanning behaviours, while not well represented 
by a single appendage, are essentially three-dimensional. 

It is clear from (8) that M vanishes if the sphere is constrained to move on a 
spherical surface 1<12 = L2. Since M is the amplitude of the field of radial motion, it 
can only vanish if on average the food particle remains a fixed distance from the 
organism. Such a behaviour would not aid an organism in feeding, and so this special 
case is of interest when one considers the waving about of some organelle connected 
to a fixed point by a rigid straight stalk. It is worth noting that the vanishing of M 
in this case is, in fact, independent of the far-field approximation, holding exactly 
for a Eulerian average velocity. To see this, one notes from (1) and (2) that, for fixed 
x , x * u  can be expressed as x*r  times a function of Ix-51 and [<I2. If the latter is 
constant, the time integral vanishes because of the differentiated factor. This result 
limits the usefulness of the single-sphere model, but the ideas introduced in this 
section can be readily extended to more realistic configurations. 

14-2 
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FIGURE 2. Third-order scanning by a sphere a t  Q leading to trapping of particle a t  P. The 
target zone is a sphere of radius R. 

3. General considerations 
The mechanism of induction of the scanning field in the single-sphere model can 

be understood by considering a single Lagrangian marker as shown in figure 2. The 
marker responds to the sphere by executing its own nearly closed figure-of-eight, but 
there are drifts due to variations in the velocity of the sphere and the separation 
distance PQ between the appendage and the particle. The first term on the right-hand 
side of (6) vanishes identically, and from the properties of the figure-of-eight orbit 
the scanning field has the form 

This is a two-dimensional divergence-free flow in each plane x3 = constant. This 
particular mechanism is the result of the symmetry of the sphere, the absence of any 
boundaries, and the fact that  only one body is considered. None of these simplifica- 
tions is really appropriate for the biological problem, and in subsequent sections we 
shall investigate how departures from the single-sphere geometry affect the scanning 
field. 

As we have indicated in $2, i t  is useful to  categorize scanning behaviour by the 
order of decay at infinity of the scanning velocity U ( x ) .  First-order scanning then 
occurs when there is a net Stokeslet strength in the scanning field. As we noted earlier, 
the most obvious natural example of scanning occurs in the 'hovering' of a negatively 
buoyant organism, for there the Stokeslet force is equal to the excess weight. A more 
artificial but simpler example is the waving about of an object whose resistance 
coefficient is variable (as the variable radius of the single sphere). It is perhaps 
preferable to  replace the sphere by an arbitrary body whose orientation is adjusted 
along the orbit, in which case the leading term in (5) is changed to 

Ua = Sij(X) A#) dr. (30) 
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where A ( t )  is a symmetric, positive definite matrix relating the velocity of the object 
to the point force F&(x-<(t))  which replaces it in the far-field approximation. If we 
stipulate that a is now defined so that A has, say, determinant 1 ,  we may write 

F, = 6auaAii&. (31) 

We shall discuss some two-dimensional examples of (30) in the following section. 
For a free, neutrally buoyant organism, the scanning field that can be generated 

at some distance is necessarily of second or higher order, since the instantaneous net 
strength of the resultant Stokeslet must be zero. We consider some simple examples 
of this case in $6. For scanning of any order, there arc significant new features when 
more than one appendage is utilized. We illustrate this for third-order scanning in 
$5. In $7 we discuss the related effect of the image system created when a boundary, 
such as the surface of the animal’s body, is present. 

We have noted above that the optimal movements of a single sphere of fixed radius 
have constant speed, and we show now that this is a general feature of optimal 
scanning. This will allow us to simplify the analysis of the more involved examples 
of first- and second-order scanning. Suppose that we have a neutrally buoyant 
organism having a complicated boundary (body, appendages, etc.), whose shape or 
orientation changes with time. We assume that a point on the boundary initially at 
x, will subsequently have position x ( f ( t )  ; x,) where 

x(O,x,) = x(T,x , ) ,  f(0) = 0, f(T) = T ,  f’(t) > 0. 
A choice of x ( f ,  xo) will fix the sequence of shapes parameterized by the artificial time 
f, while the choice off(t) determines the rate at which these shapes are realized in 
sequence over one period of the cycle. A helpful analogy is to imagine the sequence 
of shapes as images on a movie film strip. The running time of the film is fixed at  
T ,  but otherwise the speed of the projector is allowed to be varied at will. 

Now it is well known (Happel & Brenner 1965) that, through the use of the Green 
function for the Stokes equations and the instantaneous boundary shape, the viscous 
dissipation within the fluid exterior to the body can be written as a quadratic 
functional of the boundary velocity : 

T T 

0 0 
w = W-[k,kl= J PWdt = J W , q ( f ) d f ,  j =  Kf), (32) 

where &(t )  = q( f ( t ) )  > 0 is determined by the boundary motion. Also, any measure 
of scanning amplitude, such the amplitude of the far-field scanning velocity U ( x ) ,  
will be a linear functional of boundary velocity : 

T T 

0 0 
M =  4 2 1  = jP( t )dt  = p(f)df. (33) 

Note that M is independent off. We may then simply minimize W with respect to 
q5 subiect to the side condition J;y= T .  (34) 

It then follows that minimum dissipation occurs when = constant x q-: or 
jzQ = constant. Thus the optimal motion corresponds to a constant rate of energy 
dissipation in the fluid, and correspondingly to a constant rate of working by the 
animal. As a general guide, therefore, whenever the energy cost of scanning is a 
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determining factor on the behaviour, and given that substantial changes in dissipa- 
tion occur among competing movements, we should expect to see some variation 
in the speed of appendages accompanying changes in the resistance to motion which 
they experience. Movement should be slow when the resistance is large, fast when 
it is small, to maintain a constant rate of energy expenditure. We shall discuss some 
aspects of observed behaviours which bear on this question in later sections. Suffice 
it to say here that the simplest examples exhibit an insensitivity to the speed history 
and a rather broad minimum of W .  

As we indicate in our discussion in $9, for many organisms of interest the 
assumption made here of Stokesian hydrodynamics is a t  best marginally valid ; 
Reynolds numbers of appendage motion can in some species be near unity. For 
simplicity it seems reasonable in this case to base an approximate theory on Stokesian 
rather than inviscid hydrodynamics, with the understanding that inertial corrections 
should be added in some cases. We point out, however, that Oseen’s classical criticism 
of Stokes’ solution for a translating sphere does not apply to the scanning problem 
in the absence of mean motion of the organism, since the velocity at infinity is then 
zero relative to the body. If the instantaneous Stokes-flow velocity decays as 
U ( L / T ) - ~ ,  the ratio of inertial to viscous force is U L / V ( L / P ) ~ - ~ .  Thus inertial 
corrections are needed throughout the flow only for a buoyant, hovering organism, 
and only then when local Reynolds numbers are not tolerably small. In all other cases 
N > 1 and so the effective Reynolds number decreases with distance. In  particular, 
a far-field analysis is then consistent with the hydrodynamics, even though the 
far-field representation has been introduced mainly to obtain a relatively simple 
classification of scanning currents. 

A final general point concerns the appropriate measure of scanning efficiency. The 
motivation behind (25) is reasonable but the choice R = M i  is quite arbitrary. If 
instead we take 

we obtain efficiencies of 0.0077 and 0.0063 for the optimal and circular orbits of figure 
1.  For second-order scanning, where the scanning field decays like  XI-^, becomes 
independent of R and this ambiguity disappears. This is gratifying since for a 
neutrally buoyant, untethered organism the second-order mechanisms, involving 
zero net Stokeslet strength, are the strongest available. As we shall see in the next 
section, for first-order scanning the natural generalization of (25) which replaces R 
by Mi, is unreasonable, and when a single orbit is involved it is preferable to use (35). 
We suggest that (35) also be used for comparisons between scanning mechanisms of 
different order, when a single appendage is involved. For several appendages it is 
probably necessary to take into consideration the separation between orbits in the 
definition of R. We touch on this point in $5. All of these definitions necessarily 
involve only the far-field hydrodynamics, and it should be emphasized that this can 
only be very approximate when applied to specific organisms. Given that the actual 
target zone will be on the scale of the body geometry, a true efficiency cannot ignore 
near-field effects. 

Although we shall frequently comment on orbit efficiency, we emphasize that, by 
definition, an efficiency is biologically significant only if significant gains to the 
organism are obtained by lowering the energy required to scan a given volume of 
water. This would presumably happen if scanning work comprised a significant 
fraction of metabolic activity, but it could also result from a fixed but small allocation 
to scanning, provided that the feeding rate was critical. Given the rewards of efficient 
scanning, we could expect evolution to optimize the behaviour, but a clear-cut 

T,I = 4pW1F(1)  (1 = orbit length), (35) 
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prediction of outcome based upon hydrodynamical principles is possible only if 
different scanning strategies have very different efficiencies. As we noted in $2, and 
just above for the optimality of constant rate of working, the simplest models exhibit 
a relative insensitivity in this regard. 

4. First-order scanning by variable orientation 
We now turn to the simplest examples of scanning with a non-zero mean Stokeslet 

component, producing first-order scanning according to the classification of the last 
section. To represent an appendage which changes its orientation as it moves on its 
orbit, we consider a matrix A in (30) with constant positive eigenvalues. If both the 
orbit and the function A(t) defined on it are fixed, we know from the previous section 
that the speed of the body for optimal scanning will make the dissipation rate a 
constant. The efficiency defined by (35) now has the form 

Ml 

'=TIT&[,Ai,dt '  0 

where, given our freedom to choose the direction of the resultant M ,  we have 
rT 

M =  (M,O,O), Mi = J - A,&dt. 
0 

(37) 

To take the simplest case, suppose that motion is in the (q, x,)-plane and the relevant 
2 x 2 submatrix has eigenvalues A+, A- near unity, A+ > A _ .  Constancy of dissipation 
rate then implies that 141 = constant = Z/T to leading order in 11 -A+l, and so (36) 
simplifies to an integral over arc length: 

1 

0 
7 = 1-1 A,r,ds, (38) 

where r is the unit tangent vector. Let 8 be the acute angle, measured counter- 
clockwise, between the s,-axis and the principal direction of A associated with A,. 
Then 

a+/3 cos28 /? sin28 
A = [  

/3sin28 a-/3cosB28 

and so we obtain, with r = (cos $, sin $), 

Thus the optimal value of 7 is independent of path and is obtained by taking 8 = ?jII.. 
We show some representative orbits in figure 3, taking the object to be a flat plate. 
Note that for continuous motions the circular orbit requires a full rotation of the plate 
over one orbit, while the figure-of-eight does not. 

To treat some simple cases where A is not close to the identity, consider the orbits 
parallel and perpendicular to the direction of current produced. For the parallel orbit 
(figure 3c), let a, and a- be the values taken by A,,(t) during motion to the right 
and left respectively. From the constancy of the rate of dissipation we obtain the 
exact expression corresponding to the approximation (38), 
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FIQURE 3. Optimal orientations in first-order scanning with A near unity, represented by successive 
positions of a flat plate. All orbits have approximately the same efficiency. The scanning current, 
indicated by the large arrow, is to the right. (a) Circular orbit, ( b )  figure-of-eight, (c) parallel orbit, 
(d )  perpendicular orbit. 

where a(t)  is defined by 

We must then maximize 

and this is accomplished by taking a* = A,. For the orbit that is perpendicular to 
the direction of the current produced (figure 3 4 ,  we similarly are led to maximize 
AI2/A2',  which we do by setting cos 28 = P/a. We thus obtain the optimal efficiencies 

2(A\ - A P )  
T = v H =  Aq+At (parallel), 

A - A -  r = v v = A  (perpendicular), 
2 ( A + A - ) 4  

(434 

(43 b)  

If the appendage moved in the same direction as the current (to the right in figure 
3c) with fixed A, we would compute from (36) an efficiency of unity. Because the orbit 
is closed we conjecture that necessarily 71 as defined by (36) must be < 1. If this is 
so then (43b) implies A + / A -  < (1 + 1/3)2. The ratio vv/vH is monotone increasing in 
A + / A -  and so must be less than 1.27 irrespective of body shape. Since perpendicular 
and parallel orbits might be thought of as two extremes of the possible motions, it 
seems likely that there is not an appreciable effect of path on efficiency even though 
A may differ significantly from the identity. 

By a somewhat different sequence of steps, and with one additional assumption 
on A(t), it is possible to prove that the optimal closed orbit and appendage orientation 
is achieved by the perpendicular motion just described. This result, which we present 
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FIGURE 4. Optimal third-order scanning by two spheres. The current is indicated by the large 
arrow. 

in Appendix B, solves a problem of optimal hovering, and is in accord with the usual 
description of ‘normal hovering’ at higher Reynolds numbers (Lighthill 1975). 
However, the bounds on efficiency just noted suggest that a rather large family of 
orbits of the kind shown in figure 3 have nearly the same efficiency. 

We should point out that the definition (25) would not be appropriate for this 
discussion because it leads to efficiencies that are not homogeneous of degree zero in 
the A,, and so would depend upon the meaning of a in (31). 

As a last remark concerning first-order scanning, we compare the calculations of 
this section with a more realistic model of hovering involving several (e.g. two) 
appendages attached to a body. In the Stokesian realm, the net force on the body 
is determined by the excess weight and is hence fixed. As the appendages move, the 
body moves slightly in response to appendage forces not in equilibrium with the 
gravitational force. Under these conditions we may still ask that the rate of working 
of the appendages be minimized. While this problem is harder to formulate and solve 
than the simple one-appendage model which we have considered, similar principles 
are involved, particularly when the motion is symmetric and allows reduction to a 
single appendage and the body. 

5. Two spheres 
We have noted in $2 that the third-order scanning current induced by a sphere 

moving on a spherical surface will vanish. Recall that third-order scanning is the 
strongest available mechanism for a simple sphere (specifically, for a body whose 
resistance is independent of the direction of motion). We show now that two spheres, 
moving on two non-intersecting spherical surfaces, can efficiently scan at the 
third-order level. Let the spheres maintain a distance d from the points (D, 0 , O )  and 
(-D, 0,O). We shall assume that the motions are such that the 2,-components of 
velocity are always of opposite sign and that the z2- and 2,-components are of the 
same sign (see figure 4). Adding the effects of both spheres and using this symmetry 
we have 

(44) 
T T 

0 0 
M = 2 s (D2+D51+) -DR-)+d2)~;+)d t  = 4 0  s 5\+)&-)dt, 

where we set M = (0, M, 0). Minimizing dissipation for fixed M then yields the Euler 
equations 

(45) 
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Thus the orbits which close are circular, and lie in the plane determined by the vector 
(2D,O, 0 )  separating the centres of movement, and M .  We show the optimal motion 
in figure 4. 

To compute the efficiency we use (35), now accounting for both spheres, to  obtain 

1 D  D 
8n2 d d 

7 = - - = 0.013-. 

For D/d  near unity, this is about twice the efficiency of a single sphere moving on 
the two-circle figure-of-eight path discussed in $2. Note that  the unbounded growth 
of efficiency with D / d  is only a result of the irrelevance of path length as an indicator 
of the radius of the target zone in this configuration, once Dld becomes large. It would 
perhaps be preferable to take D in place of path length as the target radius, in which 
case the efficiency is 1 1 2 ~ .  

6. Zero-thrust scanning 
A free, neutrally buoyant organism waving appendages at low Reynolds number 

exerts no net force or moment on the fluid surrounding it. We can then expect the 
geometry of appendages relative to  the body which supports them to affect the 
scanning strategy and the possible role of swimming. To study some aspects of this 
problem, consider N Stokeslets carrying forces F(n) ; if the net Stokeslet strength is 
zero, the dominant contribution in the far field comes from the Stokes dipoles: 

We therefore have 

Since Xjk is symmetric, the scanning current is independent of the torque balance, 
in that contributions come only from the symmetric part of M j k .  It is perhaps worth 
noting that one must impose a torque balance with regard to torque singularities as 
well as moments of Stokeslets. If a number of appendages are represented as distinct 
Stokeslets, an instantaneous torque balance of the form 

assumes no torque singularities occur. The latter decay, in the far field of the body 
represented by a Stokeslet, like I X I - ~ ,  and have the local form 

w x x  
T=- (w = constant). 

1x13 

(Note that Tmakes no contribution to the radial drift.) For example, a group of small 
spinning spheres can be waved about so that (49) is violated a t  the Stokeslet level, 
but the resulting contributions of the form (50) can yield a torque balance in the far 
field of the group. This is because in the latter field the moment of the Stokeslet 
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FIGURE 5.Zero-thrust scanning by two Stokeslets, represented by two flat plates moving on a line. 
(a) Scanning mode, with water movement indicated by the large white arrows. (b) Swimming mode, 
with motion to the right, as indicated by the large black arrow. 

reduces to a cancelling torque singularity. Therefore, the only new condition to be 
imposed on the extremal problem is 

N 

ta-1 
z F(") = 0. 

6.1. Two Stokeslets moving on  a line 
Some of the questions which arise in this case can be seen in the motion of two 
Stokeslets along a line. Let EA(t), EB(t) be the scalar positions of two bodies moving 
on a line, with friction coefficients (defined analogously to the matrix A in (31)) A 
and B. The motion will consist of two events (see figure 5) : for a time interval T,, iA 
is positive and g B  is negative, with coefficients A,, B,. During a subsequent time 
interval of duration T,, tA is negative and tB positive, with coefficients A,, B,. Except 
for signs these are all arbitrary functions of time. 

From the force balance (51) we have A t A  + BB, = 0 or QB = - B-'AiA. The rate of 
dissipation is given by 

= 6npa(A& + B&,) = 6npak. 
W 
T 
- 

Since k is constant on an optimal orbit, we have 

We next fix the total excursion and assume 

Therefore 
rT. rT 
J ' u l ( t )  (1 +By' A,) dt = L = - u,(t) (1 + B;' A,) dt 

0 J TI 

- - (55)  



422 S. Childress, M .  A .  R .  Koehl and M. Miksis 

From (48) the scanning field has radial component 

Since this is the radial component, the scanning current can be described as having 
the general character of a Stokes dipole (or a harmonic quadrupole), as determined 
by the orientation of the flow lines (see figure 5). I n  the use of 'dipole ' below we adhere 
to the classification by Stokes solutions. We now compute 

Using (55) ,  (57) takes the form 

cca, = a 2xa [F  1 [ T I  (Lo+[ :  (:-dtf) (ka,)idt 

where Lo is the initial separation of the Stokeslets. Physically it is obvious that if 
the configuration of Stokeslets is not to undergo a net displacement over one period 
we must have A ,  = B, and A ,  = B,. In this case the optimal orientations are the 
extreme ones; that  is, if A, and Bi lie between A- and A +  then either 
A,  = B, = A,, A,  = B, = A _ ,  or the other way around, the only difference being the 
sign of the scanning field. In  the former case we obtain from (58) 

(59) 
4 .  2L 

To consider the opposite case, where the system swims without generating a 
scanning dipole field, we set A ,  = B, = A _ ,  B, = A,  = A+.  The system will then swim 
to the right with speed 

The resulting flux into a target zone of radius R is 

V = xR2USwim, (62) 

and the efficiency of particle capture by swimming is therefore (with the new values 
of T,. , computed from (55)), 

R2 

If, for example, we set Lo = $L, A - = A. = $I+, we obtain 

%'scan - ah L 
%'swim R2 ' 

- - 6 . 1 7 0  
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If we assume the excursion L and aAo are of the order of about half the length of 
the organism, then ( 6 4 )  suggests that swimming should be the preferred strategy when 
the target zone is larger than the body. If the organism is able to locate a food particle 
several body lengths away, and if food is widely dispersed, the preferred strategy 
would be to swim at random until a particle is sensed, then to home in on it. 

This calculation has neglected, however, the likely presence of a large inert body 
to which the Stokeslet-producing appendages might be attached. One can imagine 
that the body could act like a sea anchor and render the swimming behaviour 
inefficient compared to scanning, simply because of the effort then required to 
displace the entire organism. To verify this we shall assume that interaction between 
the appendages and the body can be neglected. While this is unreasonable for detailed 
analysis of the scanning currents produced, it is acceptable for assessing the 
importance of body drag during swimming. It then follows that rscan is unaffected 
by the body for the symmetric motion of appendages considered above. For 
swimming, on the other hand, the body will affect the rate of dissipation. The latter 
is now given by 

where hbody is the resistance coefficient of the added body. Using ( 6 1 )  and (62) we 
then see that, with the body included, (63) is changed to 

R2 A - A -  
rswim = -( 6aL A + + L  + 

) Kbody' 

For the parameter values above (64) this results in a new factor (1 +Abody/24AO)-1. 
While admittedly crude, this estimate suggests that body resistance must be quite 
large compared to appendage resistance before it will be determining on the efficiency 
of a scanning strategy. It must be noted however, that we have neglected the possible 
reduction of appendage efficiency because of interaction of the scanning field with 
the body. 

The efficiency (60) would suggest that scanning could be improved without limit 
by making L small compared to Lo. However the far-field approximation has been 
used to compute the scanning amplitude. To hold the letter fixed while minimizing 
dissipation is equivalent to  holding Lo L fixed while minimizing L2. Ultimately the 
two appendages act on the target zone as two independent Stokeslets, rather than 
as a single Stokes dipole, a t  which point the dissipation increases. For any fixed target 
zone, there will then be an optimal value of LoIL. 

The above computations of rscan, for linear motion of Stokeslets, is sufficiently 
simple to allow a test of constant rate of dissipation as a criterion for an optimal 
behaviour. Let us suppose that the Stokeslets move in the scanning mode as before, 
except that the outward and inward movements take arbitrary times T,, T- where 
T+ + T- = T .  It is then not difficult to show that the expression for the efficiency (60) 

( (A+)++ (A-)4)2 
is' modified by the factor 

A+ TIT+ + A- TIT-' 
The maximum value of this factor is 1, occurring when T-/T+ = ( A - / A + ) k  If, for 
example, we take A + / A -  = 1.5, a not unreasonable value given the relative insensi- 
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a 
FIGURE 6. An example of a second-order quadrupole field, produced by two pairs of appendages. 
Phases and resistances are indicated. The water movement is in the direction of the large white 
&ITOWS. 

tivity of Stokes resistances to cross-section, we find that the optimal value of 1 at 
T-/T+ = 0.82 reduces to only 0.99 at 1 and 0.96 at 1.25. To lower the figure of 0.99 
for constant speed to the relatively costly value of 0.80,A+/h- must be 9, an 
unreasonable value in Stokes flow. In spite of the very special system we are 
considering, the indication is that the optimal speed is not  nearly as critical as, say, 
the issue of paired versus unpaired appendages. The efficiency is about the same over 
a range of behaviours including movements which are, in a sense, opposite to the 
optimal one. 

When one attempts to find simple examples of second-order scanning which involve 
realistic configurations of appendages, it is natural to consider immediately at  least 
two appendages, since by symmetric movements there can be cancellation of forces 
parallel to one axis of the dipole scanning field. If the appendages are attached to 
a body, the latter will move slightly because of the uncompensated force along an 
orthogonal axis. A symmetric arrangement of four appendages can be found which 
balances in two orthogonal directions, if e.g. two-dimensional waving of flat plates 
is considered. In these hypothetical cases the second-order nature of the scanning will 
come from a variable resistance of the appendages a t  different points in the cycle of 
motion, since waving spheres, for example, whose resistance is the same in all 
directions, produce third-order scans at  best (cf. $2). The manner in which four 
appendages can generate a second-order quadrupole scanning field is suggested in 
figure 6. 

7. Scanning near a plane boundary 
Suppose that we move a sphere on a closed orbit in the vicinity of an infinite plane 

boundary where the fluid adheres. The scanning field is then altered by the image 
solution which is needed to satisfy the boundary condition. To first order the sphere 
may be replaced by a Stokeslet and the analysis of Blake (1972) applies. If z3 is 
orthogonal to the plane and E3(t)  is the distance of the sphere from the plane, it then 
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a 
- 

FIGURE I. Circular motion of an appendage near a rigid plane boundary. The direction of the 
current is indicated by the large white arrow. 

follows that in the far field the dominant flow is proportional to 6, and is due to 
the components of the motion parallel to the plane. Restricting the orbit to the 
(xl, x,)-plane, the radial flow which results is given by 

’ x1x3 
X( u, = 9u53E1-+o(lxl-2). 

1x13 

Thus we have an instance of second-order scanning, with 

The resulting scanning flow is indicated in figure 7. It is easy to show that the optimal 
orbit is circular, and, assuming there is no intersection with the boundary, the 
efficiency defined by (35) is 3/27c2 = 0.15. We may consider a circular orbit which 
intersects the boundary provided that we close the orbit by moving the sphere along 
the plane boundary in a straight line. This closure contributes nothing to the scanning 
field, but it does contribute to dissipation. Indeed, if the distance to the sphere is 
of the order of the sphere radius u there will be enhanced dissipation from wall 
interaction. 

If certain appendages of an organism are small in relation to others, or if they 
operate closer to the body surface than to other appendages, then they may operate 
almost independently, their main interaction being with the body. In  this case we 
might expect to make use of the simplest wall-interference models to understand the 
movements. 

8. Stalks and flagella 
The feeding appendages of many small animals (such as planktonic arthropods) 

are stalk-like appendages from which emerge long slender filaments, called ‘setae ’. 
As a first approximation to this geometry we might take any such appendage to be 
a single rigid straight stalk with the possibility of some variation in friction 
coefficient. Of independent interest is the waving of a slender, flexible filament as a 
model for a flagellum or a cilium. In the present discussion we shall adopt the classical 
Gray-Hancock theory (Lighthill 1975). This approach, modified to include the 
interactions between waving appendages, was used by Blake (1972) to study ciliated 
surfaces. It was also used by Pironneau & Katz (1974) to study optimal movements 
of a single flagellum. 
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The hydrodynamics of flagellar motions with application to the feeding of sessile 
organisms has been discussed by Lunec (1975) and, in a series of papers, by Higdon 
(1979u-c). In the latter work the role of boundary and body is partially accounted 
for through the Green function for a spherical body above a rigid plane. Using 
slender-body theory, Higdon considers a flagellum oriented normal to the plane and 
attached to the outermost point of the sphere, extending outward into a half-space 
of fluid. The flow set up by waves of a given form is determined numerically, and 
optimization is done numerically over the geometry of and the parameters of the 
wave. In the classification of the present paper Higdon thus studies a first-order 
scanning system, and it can be compared with other systems involving artificially 
tethered organisms (see $9). 

In the present section our object is briefly to describe some results for elongated 
appendages obtained in simple models of the kind we have used above. We first 
formulate the problem for an arbitrary continuous linear stalk attached to the origin 
in an infinite expanse of fluid. We denote the locus of points on the appendage by 
x(s, t ) ,  where s,O 2 s 2 L,  is the arc length. Assuming that the leg or flagellum is 
inextensible, s becomes a Lagrangian coordinate for linear position which is a variable 
independent oft. The condition of inextensibility is then 

According to Gray-Hancock theory, the force per unit length experienced by a 
waving linear appendage thin in cross-section compared to a typical radius of 
curvature along its axis, is given by two resistance coefficients C,, by 

In general the resistance coefficients will be time-dependent since the geometry of 
filaments, bristles, etc. might be subject to variation over an orbit. 

Our problem is then to minimize 

W = 1; k*M*idsdt .  
0 

In an unbounded fluid the scanning is first-order, and if the Stokeslet field is oriented 
along the 2,-axis we will fix 

rT f L  
4 ds dt (Problem 1).  

f = ! o  ! o  

If the appendage is regarded as situated above the rigid plane x3 = 0, then from $7 
we have 

g = ST S L  x3 4 ds dt (Problem 2) (71) 

as our measure of scanning amplitude. Note that for a rigid straight stalk with 
constant C ,  problem 1 becomes equivalent to the motion of a sphere on a spherical 
surface; we know from 52 that there is then no radial scanning current to any order. 
If C, is allowed to vary, the problem is equivalent to a three-dimensional version 
of the sphere problem of $4, to which must be added the constraint that the motion 
be on a spherical surface. 

If the stalk is flexible and attached to the plane boundary, our problem is similar 
to that of fluid transport by cilia (Blake 1972). The observed movement of a cilium 
involves an almost stalk-like ‘effective’ stroke, followed by a return stroke nearer 

0 
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FIGURE 8. Candidates for optimal scanning by a flexible, inextensible filament. (a) and (b) are 
effective strokes, and (c) is the return stroke. Numbers next to each filament indicate the order 
in which they assume each position. Arrows indicate the direction of filament motion. The dots 
indicate the attachment of the filament to the boundary. In (a) and (b) the images are superimposed, 
but in (c) they are spread out for clarity. 

the wall. The effective stroke tends to emphasize C,, while the return stroke involves, 
in some instances, largely tangential motion and a force determined by the somewhat 
smaller coefficient C,. A beating movement of this kind can cause points along the 
appendage to move on closed orbits resembling ellipses or circles, so such points might 
be compared to the sphere moving near a boundary, as discussed in the preceding 
section. This raises the question of whether boundary interaction of this kind is 
largely determining on optimal movements, or whether both the boundary effect and 
distinct friction coefficients are involved. 

A good candidate for optimality in either (70) or (71)) which is suggested by the 
form of the observed effective and return strokes noted above, is shown in figure 
8(a,  c ) .  In  problem 1 with C ,  > C,  > 0, there is some countercurrent created by the 
return stroke. In problem 2 the return stroke creates no countercurrent but the value 
assigned to C,  should include the effect of wall interference. We show in figure 8 (b) 
another candidate for an optimal effective stroke, suggested to us by Pironneau, 
which arises in a related problem of optimal swimming (Pironneau & Katz 1974). In  
the following we consider the four combinations involving either (70) or (71) and with 
effective strokes (a) or (b) in figure 8, which we indicate by appropriate sub and 
superscripts. As noted by a referee, there are physical restrictions on the bending of 
actual cilia which would necessarily modify these optima away from the completely 
flexible movements. 

(72) 
(Lf 9 9)  If we define efficiencies 

(71972) = F’ 
then it is not difficult to calculate 7pp b, corresponding to the two motions shown in 
figure 8. We obtain, with p = C,/C,, 
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FIQURE 9. A jointed appendage consisting of two straight stalks of lengths B(t)  and 1 -B(t) .  

I n  these computations we have repeatedly used the constancy of the optimal rate 
of dissipation. We also note that hydrodynamic interactions between different points 
on the stalk have been neglected, even though in a motion such as the return stroke 
these would be appreciable. 

For the case without boundary, (73a) shows that motion ( b )  (by which we mean 
the effective stroke in figure 8 b  together with the return stroke of figure 8 c )  is 
preferred for all p,  and for the typical value p = 0.7 we have qp)  = 0.035, 
qlb) = 0.050. In the case of a plane boundary, motion ( a )  is preferred provided 
that p > 0.2. With p = 0.7 we have qp) = 0.061,qib) = 0.056. For p = 1 ,  
q!f) = 0.053,r]ib) = 0.047. Thus there is a very weak effect of p,  which suggests 
that  boundary effects are more important to the scanning strategy than the intrinsic 
hydrodynamics of a stalk. If we take p = 1 ,  the points on the stalk behave essentially 
like spherical bodies and so the theory is a continuous version of the scanning problem 
considered in $7. The fact that  biological appendages are attached to boundaries and 
sometimes have motions resembling (a) could imply that the comparably modest 
improvement in efficiency over motion ( b )  may be of consequence to the organism. 
However any hinged appendage swung from the base by muscles would more readily 
do (a)  than ( b ) ,  and so be a consequence of morphology rather than hydrodynamic 
performance. 

The solution of the constrained minimization problem (67)-(69) with (70) or (71) 
is not an easy matter for general flexible filaments. Perhaps the simplest geometry 
which is capable of describing a family of realistic movements is that shown in figure 
9. The appendage consists of two straight stalks joined a t  the point P. By allowing 
the point P to  move as a function of time, the two motions of figure 8 can be realized, 
along with a large family of intermediate cases. 

We shall not pursue this line of investigation here, but will summarize some results 
for small perturbations of a uniformly rotating stalk when the point P is not allowed 
to move, as would be the case for an anthropod appendage with one joint. Let the 
two segments of the stalk have, in suitable units, lengths /3 and ( 1  -p). The system 
is hinged a t  0 and P and we assumc the appendage remains in the (q, s,)-plane. The 
angles 0 and $ are defined in figure 9. If, using (69) and (70) we seek extrema of 
W+Af in this problem, we observe that 

e, = +, = --+227Ct (74) 
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are solutions of the Euler equations, with f = 0. If we seek nearby extremals by 
perturbing in an amplitude parameter E ,  there results 

8 = B0 + EA cos 2 ~ t ,  (754  

9 = $,,+EB C O S ~ K ~ ,  (75b) 

where A and B are functions of p = C,/C, and p. We can then calculate an efficiency 
using (72), and then an optimal p for given p (p = 0.48 for p = 0.5). A similar analysis 
is possible for a filament rotating above a plane wall (/3 = 0.75 for p = 0.5). 

These solutions are, however, far from the motions shown in figure 8, which depend 
very much upon the motion of the point P. Ideally, the two-stalk system with variable 
P might provide an effective cilium model provided that wall-dependent C, and C, 
were used, but this leads to a difficult minimization problem, about which little is 
known. For 0 < p < 1 in the absence of a wall, we conjecture that ( b ) ,  ( c )  of figure 
8 is the optimal scanning movement in the two-stalk model, as determined from the 
efficiency (72). 

9. Discussion 
The various scanning mechanisms described above provide the beginnings of a 

framework within which the appendage movements of small aquatic organisms can 
be analysed. The models predict some interesting biological consequences of the 
physical properties of these scanning systems. 

9.1. Organisms to which our models apply 
Since Stokes equations have been used throughout, our models are formally restricted 
to scanning appendages for which inertial effects can be ignored. Stokesian mechanics 
should however be applicable to the flagella and cilia of protozoans and to many 
invertebrate larvae (see e.g. the reviews by Chia et al. 1981 ; Fenchel 1986). On the 
other hand, the scanning appendages of many other abundant small aquatic animals 
(such as copepods and cladocerans, which are important in marine and freshwater 
food webs) operate at Reynolds numbers approaching unity (e.g. Lochead 1977 ; 
Koehl 1984). In this range, we do not expect the inertial corrections to the present 
results to be large, for the reasons mentioned in $3  as well as by comparison of the 
problems considered here with certain classical results, such as the inertial correction 
to the Reynolds number dependence of the drag of a sphere in uniform motion (see 
e.g. Batchelor 1967 p. 234). Since viscous stresses are surely significant, it  seems to 
us reasonable to deal with the awkward Re range from the low rather than from the 
high side, at  least in these preliminary models. 

The scanning behaviours of many small organisms involve complex motions of a 
number of appendages, often working in concert and close to the body. The combined 
flow field is not easily modelled by any one of our examples, but the simple geometries 
we have considered suggest a list of elementary scanning movements involving 
spheres and stalks. Even a relatively simple subsystem of an organism’s scanning, 
such as the symmetric flapping of two appendages, can combine two or more of the 
elementary models. For example, all appendages could produce a first-ordcr com- 
ponent in the case of a negatively-buoyant organism. Simultaneously, phases and 
motions can be coordinated to produce second- or third-order components in the far 
field, which can create currents as large as the first-order one in the region of the 
animal. 
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Although the motivation of the present paper was in scanning as a feeding 
behaviour, dissolved oxygen and other substances which could also be of importance 
to the animal are carried by the same current. Hence our models could apply as well 
to the efficiency of refreshing the water supply of a suitable target zone near the 
organism. (Gavis 1976 has discussed the diffusion of dissolved substances to the 
surfaces of small planktonic organisms.) 

9.2. Egiciency 
Our models address the energy efficiency of scanning (volume of water processed per 
unit of energy expended) for each of a number of mechanisms by which flapping 
appendages can move fluid. One general result is the constancy of the rate of viscous 
dissipation a t  the optimum, throughout the cycle of motion. We have seen, however 
($6) that the energy penalty for departures from the optimum may be extremely 
small. Therefore, we suggest that  the ‘fine tuning’ of rate of dissipation for a fixed 
cycle of movement may be unimportant through evolutionary time. 

I n  contrast, our models point out certain changes in scanning systems that do 
produce significant changes in the estimated efficiency (such as the addition of a 
second appendage, roughly doubling the efficiency in the example of third-order 
scanning given in $5). Nonetheless, we need to keep in mind that certain aspects of 
scanning systems may not represent optimization over evolutionary time. For 
example, although our study suggests that paired appendages can operate more 
efficiently for scanning than isolated ones, their common occurrence on scanning 
organisms may simply be the result of bilateral symmetry of non-scanning ancestors 
of these creatures. 

Which scanning mechanisms are most efficient 1 Although we reiterate that  specific 
instances of scanning must be examined in more detail before any firm conclusions 
can be drawn concerning the relative benefits of the mechanisms of various orders, 
the crude estimates suggest a range of possibilities. If a is the appendage’s size and 
L is the size of the orbit, and if we make the extreme assumption that the scanning 
current into a target volume of roughly R3 can be evaluated using the far-field 
scanning velocity, then the volume of water processed per unit time by an nth-order 
scanner is V x Ln aR2/TRn. The rate of working is W / t  x ,uaL2/T2. The efficiency 
7 = ,uV/ W is then approximately (L/R)n-2.  Roughly, therefore, first-order scanning 
is preferred for large RIL, third- and higher-order for small RIL, with second-order 
scanning indifferent to  this ratio. 

If the energetic cost per unit time to produce a feeding current is small relative 
to the total metabolic rate of an organism (e.g. Vidal 1980; Fenchel 1986), factors 
other than energy efficiency may have been more important in the evolution of 
scanning motions. Perhaps for organisms living in water where food concentrations 
are low (such as the open ocean, e.g. Conover 1981) and where they must compete 
for these limited resources with other suspension-feeders, the important optimization 
problem to consider is maximization of feeding rate, presumably with any number 
of side conditions. We have considered here only maximization of feeding rate as 
measured by volume of water processed per unit time relative to scanning work. 
Another factor that  might affect the relative success of a scanning behaviour is the 
organism’s susceptibility to  predation during scanning. We have not addressed these 
issues in this paper, but we can use our models to treat some aspects of predator 
avoidance. 
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9.3. Predator avoidance 
Many invertebrate predators on planktonic organisms sense the presence of their prey 
by mechanoreception (e.g. Gerritsen & Strickler 1977 ; Gill & Crisp 1977). Therefore, 
prey can be cryptic to those predators by disturbing the fluid around themselves as 
little as possible (e.g. Zaret 1980). Hence, a trade-off may exist between maximizing 
food captured and minimizing the chances of being captured by a predator. Moreover, 
as a referee points out, a small-disturbance strategy could also be useful to a predator ! 
This situation has some interesting fluid-mechanical consequences. 

In general terms we may conclude that the more rapidly the fluid disturbance 
decays with distance from a suspension-feeding organism, the more cryptic it is likely 
to be to predators using mechanoreception. In our analysis we have focused on the 
radial component of the flow fields produced by various appendage motions since 
these are the components bringing food into the target zone. We have classified these 
scanning mechanisms as first-, second-, and third- or higher-order to indicate how 
this radial component decreases with distance from the animal. However, in 
analysing cryptic behaviour, non-radial components of the scanning current must be 
considered as well. One result of this is that third-order scanning behaviours produce 
a current which decays at the same rate as for general second-order mechanisms (but 
the slowly-decaying component of this current will move particles on a fixed spherical 
surface without bringing them closer to the target zone). Therefore, we can predict 
that first-order scanners will be more noticeable to predators than second-, third-, 
or indeed higher-order scanners, and that all orders greater than one are similar in 
this regard. 

9.4. Feeding strategies 
The paths along which planktonic organisms should swim in order to maximize 
encounter probabilities with food while minimizing encounters with predators have 
been modelled (e.g. Gerritsen & Strickler 1977), while other studies (e.g. Cowles & 
Strickler 1983) have focused on how these creatures apportion their time between 
various behaviours to maximize net energy gain under different conditions of 
food-particle availability. Hydrodynamic models such as those considered in this 
paper may help in this analysis of feeding behaviour. For example, we have noted 
in $6 that scanning and swimming can each be preferred feeding strategies depending 
upon the relative sizes of target zone and animal. Predictions of this kind may be 
quite robust within the models considered here. 

Another point of interest concerns the combining of models of first-order scanning 
and hovering into a single theory of optimal feeding behaviour. Haury & Weihs 
(1976) have argued on the basis of a fluid-dynamical model that the optimum strategy 
for maintaining vertical position is not steady hovering, but is rather a combination 
of active upward swimming and passive sinking. Whether this strategy has other 
significance in terms of scanning or predator avoidance is unclear, but an analysis 
would seem feasible along the general lines developed here. 

9.5. E8ects of gravity, tethering, and sea anchors on scanning 
Biologists have suggested that flow past a scanning organism can be increased by : 
(i) increasing the negative buoyancy of the organism (Strickler 1982), (ii) tethering 
the organism (Fenchel 1986), or (iii) increasing the drag on the main body of the 
organism, so that it acts like a sea anchor to which the scanning appendages are in 
effect tethered (Emlet & Strathmann 1985). We can consider these suggestions on 
the basis of the picture we have developed of first-order scanning. 
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Strictly, only cases (i) and (ii) involve first-order scanning. Mechanism (ii) is of 
interest because many protozoan feeders actually tether themselves while feeding 
(Fenchel 1986), and also because tethering is a convenient laboratory procedure for 
observing an organism during its feeding. How is the flow field altered by this 
procedure ‘1 

When a neutrally buoyant organism swims, the Stokeslet associated with thrust 
is cancelled by an opposing Stokeslet associated with mean body resistance. These 
two contributions can be separated mathematically only through a decomposition 
of the boundary conditions on the moving surfaces. On the other hand, if the organism 
is held in place by a tether and does not change its flapping behaviour, it will develop 
a thrust and pull on the tether. The tether force restraining the animal is balanced 
by a net Stokeslet (i.e. a first-order scanning component) generated by the flapping. 
We can thus distinguish two cases of tethering, assuming that the leash is invisible 
to the flow and that the flapping is unaltered by the process: (a) if the untethered 
animal hovers in one spot, the flow field is unaffected by tethering and no force is 
measured in the leash; ( b )  if the untethered animal swims with speed U ,  then a force 
will be measured in the leash and a Stokeslet component is thus added to the flow 
field produced by the organism. The flow field relative to  the animal when tethered 
would appear as the disturbance field seen around an  untethered animal plus that 
due to a mean drift a t  speed U in a direction opposite to  the force at  the tether point. 
Therefore, the use of a tether can cause a neutrally buoyant swimmer to simulate 
a relatively heavy first-order scanner, with tether force replacing weight. If a 
negatively-buoyant organism is tethered, the first-order scanning component can be 
determined by summing the relative weight and the tether force. 

To consider mechanism (iii) above, interpreted as a sea anchor, we must regard 
the organism as composed of a scanning machine (the flapping appendages) tethered 
to a high-resistance body (the anchor). In  this case there is a distribution of Stokeslets 
associated with the scanning machine, but it is balanced by another distribution over 
the body, to make the net Stokeslet strength zero (assuming neutral buoyancy). Only 
in the immediate vicinity of the scanning machine (where the target zone might be 
located) will the intense currents associated with local Stokeslets be found, and the 
existence of an effective sea anchor be confirmed. 

I n  this paper we have outlined a number of basic mechanisms by which waving 
appendages can produce scanning currents in Stokes flow, and have examined their 
relative efficiency based upon energy expended to scan a given volume of fluid. The 
models are very simple and do not account for the complex geometry of feeding 
organisms. Nevertheless, our analysis clearly indicates the importance of classifying 
scanning behaviour according to the far-field representation of the current produced. 
We have also found that optimal scanning movements may fall within a rather broad 
band of behaviours of essentially equal efficiency. Finally, a number of questions 
regarding animal behaviour can be studied, including the issue of swimming versus 
scanning as the most efficient means of feeding. 
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Appendix A 
We shall consider Eulerian and Lagrangian definitions of mean scanning current, 

a t  a point x in the far field of a scanning system located near the origin. Let x,(t) 
denote the position of a Lagrangian particle initially at  x. We shall consider the flow 
over one period T of the scanning system. If u(x, t )  is the velocity field created by 
the system, the Eulerian mean velocity a t  x is defined by 

T 
U =‘I u(x,t)dt. 

E - T  

Now the Lagrangian point satisfies 

The Lagrangian mean of the particle velocity near the point x is then 

This definition is reasonable in the far field since lulT -4 1x1 there. 
Comparing the two mean velocities we have 

i rT 

J o  

(x,-x)*VU(X, t)  dt, 

x f f u(x, t ’ )  dt’-Vu(x, t )  dt. (A 4) 
0 

Suppose now that the scanning system involves a single characteristic length L. 

Q) 
Then in the far field 

u(x, t )  = u, z T,(L-lx, F t ) ,  (A 5) 
1 

where IT,I is homogeneous of degree n in L-lx. Thus, from (A 4) we have 

v, - U, = O( q TLZIxI-3). (A 6) 

so that, in general, the difference between the Lagrangian and Eulerian definition of 
mean scanning velocity will appear at the third-order level. 

However, scanning systems may involve more than one scale of length. In  our 
example of third-order scanning (92), a sphere of radius a moves on an orbit of size 
L % a. This produces an instantaneous Stokeslet component in u of order (aL/Tlxl). 
Using this in (A 4) we then have 

v,- v, = O(dL2T-’IxI-3), (A 7 )  

whereas the radial component of the Eulerian scanning current is of order aL3T-11xl-3 
and so is larger by a factor L/a. More generally, if the scanning is nth-order according 
to the Eulerian definition (A i ) ,  Eulerian and Legrangian velocities coincide provided 
that ~ L ~ l x l - ~  9 a2L21~I-3, implying the scales must be ordered so that 
a -4 Ln-z)x19-n. In effect the second length allows the particle velocity to be made 
very small without adjusting the geometry of the scanning orbit. 
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The above arguments depend only upon orders and so are general. The actual value 
of U,- UL may be smaller in specific instances. For example, for the sphere of 
constant radius ($2) we find that 

where S< = { ( t ) - { ( O ) .  Thus radial drifts of particles agree to the order of scanning, 
even though the latter is three. 

Appendix B 
We shall determine the optimal orbit for the problem of $4. We first suppose that 

A(t) is given, along with the period T ,  and seek to find a function q(t)  which minimizes 
dissipations for fixed M on a closed orbit. We thus have the two side conditions 

kjr e*A*qdt = qdt = 0, e = ( l , O , O ) .  

Since A is symmetric, the extremal satisfies 

A-q = h A * e + v ,  (B 2) 

where h and v are constant multipliers. We may solve for these using (B 1). If ( a )  

denotes the time average over one period and S = (Ap1)-,, 1 = identity, then 
M 
T 

q = h[/-A-'B].e,  A = - [e - ( (A) -B)*e] - l  

From (B 3) and (41) we obtain an efficiency 

We can now optimize over the orbit provided that we restrict attention to functions 
A(t) satisfying (Al2) = 0. (Equivalent to (sin28) = 0, cf. figure 3). This is the added 
condition which we referred to at the end of $4. In  this case (B 3) takes the form 

We now show that A,, must be constant on the optimal orbit, given that the 
invariants of A are independent of time. By the constancy of the rate of dissipation 
for optimal scanning ($3), we have, using (B 5 )  

A, ,  + (BA-lB),, = constant, 

so either 

or else 

Thus either A,, (and therefore A22) is constant, or else Det (A )  = 
case (B 4) and (B 5) give 

In the latter 

(B 6) 
trace (A )  - 2(Det (A))t '=( Det(A) 
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Thus to maximize 'I in (B 6) we must set A,, equal to (Det (A)) i .  This again gives 
constant A,, but with efficiency 

(B 7)  
( h + ) 2 - ( L ) t  

'I' (h+h-)!  
which is smaller than (43b). 

and the discussion reverts to that given in $4, leading to (43b). 
We thus find that the optimal orbit is, by (B 5) with A,, constant, a vertical one, 
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